minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
↳ QTRS
↳ DependencyPairsProof
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
QUOT2(s1(x), s1(y)) -> MINUS2(s1(x), s1(y))
LE2(s1(x), s1(y)) -> LE2(x, y)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(s1(x), s1(y)), s1(y))
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
QUOT2(s1(x), s1(y)) -> MINUS2(s1(x), s1(y))
LE2(s1(x), s1(y)) -> LE2(x, y)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(s1(x), s1(y)), s1(y))
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LE2(s1(x), s1(y)) -> LE2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(x), s1(y)) -> LE2(x, y)
POL(LE2(x1, x2)) = 2·x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
POL(MINUS2(x1, x2)) = 2·x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(s1(x), s1(y)), s1(y))
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(s1(x), s1(y)), s1(y)))